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Drops, liquid layers and the Marangoni effect

B y Manuel G. Velarde
Instituto Pluridisciplinar, Universidad Complutense de Madrid,

Paseo Juan XXIII, n.1, 28040-Madrid, Spain

An overview is given of recent results about the onset and development of steady and
time-dependent flow motions past an instability threshold induced by the Marangoni
effect. First, I consider the case of a liquid drop immersed in another immiscible liquid
when (endo- or exothermic) reaction, heat and/or mass transfer at/across the drop
surface, etc., leads to self-propelled drop motion, overcoming viscous drag. Then I
recall salient features about the spreading of an immiscible or a dissolving drop (with
surfactant) on the surface of another liquid. Finally, I consider Bénard layers when
either steady convective patterns or waves are produced by appropriate heat or mass
transfer across the open surface.

Keywords: interfacial instability; spreading; Bénard patterns; interfacial waves;
dissipative solitons; drop motions

1. Introduction

When there is an open surface or an interface exists between two liquids, the interfa-
cial tension, σ, accounts for the jump in normal stresses proportional to the surface
curvature across the interface; hence this Laplace force affects its shape and stabili-
ty. Gravity competes with it in accommodating equipotential levels with curvature.
Their balance defines, for instance, the stable equilibrium of spherical drops or bub-
bles. If the surface tension varies with temperature or composition, and, eventually,
with position along an interface, its change takes care of a jump in the tangential
stresses. Hence its gradient acts like a shear stress applied by the interface on the
adjoining bulk liquid (Marangoni stress), and thereby generates flow or alters an
existing one (Marangoni effect). Surface tension gradient-driven flows are known to
affect the evolution of growing fronts, and measurements of transport phenomena.
The variation of surface tension along an interface may be due to the existence of
a thermal gradient along the interface or perpendicular to it. In the former case
we have instantaneous convection while in the latter flow occurs past an instability
threshold (Levich 1965; Levich & Krylov 1969; Scriven & Sternling 1960; Ostrach
1982; Davis 1987). The Marangoni effect is the engine transforming physicochemical
energy into flow, whose form and time dependence for standard liquids rests on the
sign of the thermal gradient and the ratios of viscosities and diffusivities of adjacent
fluids.

2. Drops and bubbles

(a ) ‘Passive’ drops
To place in context our recent findings and the difficulties still existing ahead of

us, let me recall how the hydrodynamic force on a drop has been estimated since the
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pioneering work of Newton and Stokes (Levich 1965; Levich & Krylov 1969; Happel
& Brenner 1965; Edwards et al. 1991). From Newton’s experiments in 1710, and later
observations, the magnitude of the drag force of a viscous fluid on a solid sphere (a
drop, in a first approximation) in steady motion was given as

FD = 0.22πR2ρU2, (2.1)

where U is the relative velocity between particle and fluid, R is the particle radius
and ρ is the fluid density. This relation is for ‘large’ values of U , for which inertial
(kinetic theory) effects are dominant.

Stokes, in 1850, suggested that at very low relative velocities all inertial effects are
so small that they can be omitted from the Navier–Stokes equations (creeping flow
approximation). Under this condition, the drag on a sphere is

FD = 6πRηU, (2.2)

with µ denoting the dynamic or shear viscosity of the fluid. Oseen pointed out that
at a great distance from the sphere the inertia terms become more important than
the viscous terms, and suggested a possible improvement of the Stokes’s law (2.2)
by taking inertial terms partly into consideration. He obtained a drag force,

FD = 6πRηU(1 + 3
16Re), (2.3)

where ν is the kinematic viscosity of the fluid and Re = (2R)U/ν. Neither Stokes’s
nor Oseen’s laws are uniformly valid, and the latter is not really an improvement
of the former. Rather Stokes’s analysis is valid in a small enough neighbourhood
of the sphere and Oseen’s analysis, though valid far from the sphere, is not valid
when approaching the sphere. Oseen’s approximation, although incorporating inertial
terms, is a linear theory and Stokes’s approximation is a steady-state theory.

The mathematical problems solved by Stokes and Oseen come from different
approximations to the Navier–Stokes equations, together with appropriate initial and
boundary conditions. As for the axisymmetric motion of a sphere there is always a
stream function, Ψ , with (r, θ, φ) coordinates and the hydrodynamic equations reduce
to (Levich 1965; Happel & Brenner 1965)

∂

∂t
(E2Ψ) +

1
r2 sin θ

∂(Ψ , E2Ψ)
∂(r, θ)

− 2
E2Ψ
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The Stokes aproximation is the reduction of equation (2.5) to

E4Ψ = 0. (2.5)

Equation (2.6) with the appropriate non-penetration no-slip/stick BC and suitable
asymptotic behaviour for large r, yields

Ψ(r, θ) = (−1
4U(R3/r) + 3

4URr − 1
2Ur

2) sin2 θ, (2.6)
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Drops, liquid layers and the Marangoni effect 831

hence the hydrodynamic drag force (2.2). Note that from (2.6) it follows that the
disturbance of the sphere extends to infinity as 1/r, and the presence of a boundary
or another drop can modify the flow appreciably even when placed at a distance of
many diameters from the drop. It was not until the fifties that Stokes’s and Oseen’s
results were properly put in context and generalized.

In 1911–12, Rybczynski and Hadamard, independently, solved the Stokes problem
for a liquid drop with flows outside and inside (Levich 1965; Happel & Brenner 1965).
Their extension of equation (2.2) is

FD = 6πη0UR

[
1 +

2
3µ

1 + µ

]
, (2.7)

with µ = ηi/ηo (ηi = ηdrop). The limit ηi going to infinity yields Stokes’s law (2.2),
while ηo � ηi yields the corresponding law for a bubble, with 4 rather than 6 in
equation (2.2).

In 1957, Proudman & Pearson (1957) considered Stokes’s solution as a local (or
inner) solution of the problem and Oseen’s as the regular (or outer) solution. The
former was assumed to be valid in a spherical region of radius 1/Re around the sphere
while the outer solution was valid from infinity down to the 1/Re neighbourhood.
In the overlapping zone both solutions were accepted as valid; hence the need to
appropriately match them. Proudman & Pearson found that for non-vanishing albeit
low Reynolds number flows (Re� 1) the hydrodynamic drag on the sphere is

FD = 6πηUR(1 + 3
16Re+Re2 + 9

160Re
2 lnRe+ · · ·), (2.8)

which shows the non-analytic form of the expansion.
Subramanian (1981) used matched asymptotic expansions to obtain the hydrody-

namic force on a drop including convective terms in the heat equation while main-
taining the Stokes approximation for the velocity field. With

M = −
(
∂σ

∂T

)
dδT
κη

,

where κ is the thermal diffusivity of the drop, T denotes temperature and ∆T is
the temperature contrast over a length scale d (this scale may be taken as R), his
series expansion in terms of the Marangoni (as a Péclet, Pe = 2RUT/κ, UT =
−(∂σ/∂T )∆T/η) number, and subsequent improvement by his collaborator Merritt,
did not show any logarithmic term (Merritt & Subramanian 1988; Subramanian
1992; Wozniak et 1988). This was due to the way the outer solution was treated.

Taylor & Acrivos (1964) obtained the contribution of the deformation of the sphere
in terms of the capillary number. At Re = 0, a drop or a bubble remains spherical
irrespective of the low or high value of the (constant) surface tension. However,
deformation may be relevant even when inertial effects are ignored if the surface
tension σ is not constant. If over the spherical surface ∆σ is small compared to
the value of σ, the capillary number will be small, and the drop or bubble may be
asummed spherical with negligible error.

Young et al. (1959) were the first to realize the possibility of levitating a drop or a
bubble by Marangoni stress. They showed that a drop or a bubble placed in another
fluid where a temperature gradient exists instantaneously tends to move towards the
hotter point. This is the motion of the drop relative to the flow induced along its
surface by the lowering of surface tension at its leading pole (hotter than the rear
pole). Using the Stokes–Rybczynski–Hadamard approximation they also computed
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the terminal velocity of a drop or a bubble in the field of gravity, and experimentally
checked the theoretical prediction within reasonable accuracy (within 20%) with
an experiment using rising bubbles in a liquid layer heated from below (diameters
2R = 10−3–22 × 10−3 cm; ∇T = dT/dz = 10–90 K cm−1; z denotes the vertical
coordinate). Using neutrally buoyant liquid water at 4 ◦C, Bratukhin et al. (1979,
1982) did a similar experiment with rising bubbles in a laterally heated vertical liquid
layer.

In their experiment, Young et al. (1959) used a tiny open liquid bridge. An improve-
ment eliminating wetting and capillary convection at the open sides was carried out
by Hardy (1979). He used a closed cavity with silicone oil and air bubbles (2R = 5–
25×10−3 cm; dT/dz = 40–140 K cm−1). Hardy discussed the role of contamination at
the surface of the bubble, earlier suggested by Levich (1965; Levich & Krylov 1969).
Further improvement came with an experiment by Merritt & Subramanian (1988).
Experimentalists started using drops rather than bubbles. Barton & Subramani-
an (1989) used neutrally buoyant drops (2R = 20–600 mm, dT/dz = 2.4 K mm−1).
Recent Earth-based and low-g work by Braun et al. (1994) on thermocapillary migra-
tion of drops provided the most accurate verification of the prediction by Young et
al. (1959). Their Marangoni (Péclet) number was in the range 10−5–10−6, but with a
a non-standard liquid of surface tension increasing with the increase of temperature
(2 butoxyethanol-water mixture with liquid–liquid phase separation at 61.14 ◦C on
the lower branch of the closed miscibility gap; 2R = 11 µm, dT/dz = 36.9 K m−1,
dσ/dT > 0).

For the Young, Goldstein and Block problem the balance between capillary, buoy-
ancy and hydrodynamic forces is

Fσ + Fg = AU, (2.9)

with the (Marangoni) capillary force

Fσ =
4πR2

(1 + µ)(1 + δ)

(
dσ
dT

)
(∇T )∞ (2.10)

and the buoyancy force
Fg = 4

3πR
3g(ρi − ρo). (2.11)

As

A = 4πη0
1 + 3

2µ

1 + µ
R > 0, (2.12)

the hydrodynamic force AU represents drag. δ = λi/λo is the ratio of thermal conduc-
tivities (drop to surrounding fluid). Clearly, AU embraces both Stokes’s law (ηi →∞,
µ→∞) and the Rybzcynski–Hadamard law ([∇T]∞ = 0).

(b ) ‘Active’ drops
The work on drops and bubbles so far recalled, refers to ‘passive’ drops. Now I turn

to some recent findings about ‘active’ drops obtained with A. Ye. Rednikov and Yu.
S. Ryazantsev (Rednikov et al. 1994a–e, 1995a; Velarde et al. 1996). By an ‘active’
drop or bubble I mean a drop or a bubble with internal volume heat sources, with
a surface where chemical reactions may occur, or there is drop dissolution with heat
release, etc. Take, for example, a drop at rest in a homogeneous medium and assume
that there is (uniform) internal heat generation or a surface chemical reaction. Let us
evaluate how the state of rest can be made unstable. Consider, for instance, the latter
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case with given uniform composition far off the drop. A composition fluctuation at the
surface of the drop brings the Marangoni effect which yields flows inside and outside
the drop. They can be sustained if the Marangoni effet is strong enough relative to
viscous drag and heat diffusion, i.e. past an instability threshold. Indeed, as the drop
moves the flow brings to the leading pole the higher solute at the surface, it makes
the concentration far off the drop higher than that in its vicinity. Alternatively, if a
velocity fluctuation tending to move the drop in a certain direction spontaneously
occurs, it breaks the initial spherical symmetry in composition; hence the possibility
of bringing strong enough Marangoni stresses which in turn can help sustain the
velocity fluctuation past an instability threshold. If the initial state is that of a
uniform constant drop velocity or there is an externally imposed temperature or
composition gradient, as in the experiment of Young et al. (1959), then instability
is also possible leading to a different drop motion. These are not the only possible
instabilities as the effects due to deformability and time dependence may come into
play.

To illustrate how we have proceeded along the path set by the earlier mentioned
authors dealing with passive drops, now I consider the case of a spherical drop mov-
ing with constant velocity in a temperature and composition-homogeneous infinitely
extended surrounding fluid. Both the inner and outer fluids are taken immiscible.
The surface tension is assumed to vary linearly with temperature. The outer fluid is
assumed to have a uniform concentration of a solute which is allowed to react exo-
or endothermally at the surface of the drop. Far off the drop both the temperature
and concentration of the solute are constants; hence there is no external gradient.
Stefan flow is negligible (convective flow of the reacting components in a direction
normal to the surface where the reaction is taking place; it is generally a small effect
for most chemical reactions and is normally important only in the presence of strong
ablation or condensation). Let us consider the low Reynolds and Péclet number
approximations with, however, M Pe = 1 (M is defined as earlier for the drop while
Pe is defined using the far-field reference velocity, U , as for the earlier used Reynolds
number, with indeed κ replacing ν). In dimensionless form the steady equation (2.4)
becomes

Re

ν∗r2

{
∂(ψi, E

2ψi)
∂(r, δ)

+ 2E2Lrψi

}
= E4ψi, (2.13)

which is nonlinear. It is considered together with the corresponding nonlinear heat
and mass diffusion equations, and appropriate BC. Here Re is defined with the con-
stant drop velocity, δ = cos θ, ν∗ refers to (kinematic) viscosity (i = 1, outer fluid,
ν∗ = 1; i = 2, drop, ν∗ = ν), and Lr corresponds to the operator appearing in the
third term of equation (2.4).

The linear solution of equation13) yields the hydrodynamic force (Rednikov et al.
1994a–c; Velarde et al. 1996).

F = −4πη1rAU. (2.14)

If A is negative we have drag while if A is positive there is thrust; hence self-
propulsion and autonomous motion of the drop in a medium originally uniform.
We have

A = −[1 + 3
2µ+ 3m]/(1 + µ+m), (2.15)

with µ = η1/η2 and m a suitably scaled Marangoni number accounting for a balance
between dσ/dT , the chemical reaction rate, and (viscous and heat) dissipation. For
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further details and the various cases studied see Rednikov et al. (1994a–e, 1995a) and
Velarde et al. (1996). We see that at m = m1 = −1

3 − 1
2µ we have A = 0, where, as

at m = m2 = −1−µ, A diverges to infinity. Clearly, the study of both cases demands
nonlinear analyses. Before referring to this we note that for A = 3, the Marangoni
effect combined with the chemical reaction yields the possibility of self-propulsive
thrust, while for A = −1 we have drag, as well as for A = −3

2 . In the later case, the
flow inside the drop completely stagnates as if it were a solid sphere. For A = −3
there is enhanced drag due to the appearance of recirculating backflow around the
drop and flow reversed in the drop.

The weakly nonlinear result for (m − m1) (> 0, � 1) provides the value of the
hydrodynamic force

F = −4πη1R[A+B(RU/ν1)]U, (2.16)
with

B = − 1
4A

2 + 1
2 Pr [m(6 + 3L−AL)/(1 + µ+m)], (2.17)

where here Pr = ν1/κ1, and L = κ1/D is the (inverse) Lewis number of the homoge-
neous surrounding medium. A representation of F versus U straightforwardly shows
that for (m −m1) < 0 (A > 0) there are three possible values of U for zero hydro-
dynamic force; hence, possible autonomous motion of the drop. The addition of an
external force field like buoyancy, or an externally imposed thermal gradient like in
the experiment by Young et al. (1959) provides the possibility of three genuinely
different non-zero velocities for a given force field strength. We have multiplicity of
steady states of motion which cannot all actually be realizable.

For m < m2, there are three possible values of the hydrodynamic force for zero
velocity; hence three possible coexisting levitation levels of which one cannot be
stable. Levitation or motion is a consequence of the nonlinearity in the flow coupled
to the Marangoni stress, and not a consequence of some external thermal gradient
as in the case treated by Young et al. (1959).

Complete stability analyses, respectively, for m around m1 and m around m2,
have not been carried out. They demand the inclusion of the time-dependent term
in equation (2.4) and explicit use of the convective state, which is a formidable task.
However, ad hoc quasi-stability analyses have confirmed the results reported here.
For further details see Rednikov et al. (1994a–c).

Finally, addition of a time-varying gravity field as it occurs in space (g-jitter)
and in some Earth-based experiments, leads to a time-dependent weakly nonlinear
vector-form Landau equation for the velocity of the drop (Rednikov et al. 1995).
This equation can be used not only to find the stationary regimes and analyse their
stability, but also to consider time-varying motions. In the simplified case of a small
amplitude buoyancy force changing sinusoidally with time the result found is that
an active drop capable of autonomous motion actually tends to move in a direction
orthogonal to the time-varying force.

3. Spreading of a drop on another liquid under Marangoni stress

(a ) Insoluble surfactant
With de Ryck and Starov (Starov et al. 1997), I have recently considered the

spreading of an insoluble drop of surfactant over a thin viscous layer (e.g. less than
a millimeter depth). The experiment and theory refer to a case where diffusion is a
much slower process than convection due to the Marangoni effect. For concentrations
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above CMC (about 3 µl of an aqueous solution of SDS at c = 20 g l−1; CMC is 4 g l−1)
the spreading process involves two stages. First, there is a rather fast stage when the
surfactant concentration is determined by the dissolution of micelles, with a duration
fixed by the initial amount of micelles. Then it follows a second slower stage when
the surfactant concentration drastically changes in the original center position of
the drop but as the total mass of surfactant remains constant a hole, a dry spot is
created in the liquid layer.

As the drop circularly spreads due to the dominant role played by the nonlinearity,
the percursor film develops a shock-like front whose time evolution according to the-
ory follows a power law in time; first about 1

2 (experimentally, t0.6) and subsequently
1
4 (experimentally, t0.17). The radius of the inner hole at the centre expands, also
with a power law t1/4 (theory and experiment). Further theoretical developments for
the more general case when diffusion takes on a time scale comparable to Marangoni
convection can be found in Starov et al. (1997), Borgas & Grotberg (1988) and Gaver
& Grotberg (1990, 1992).

(b ) Soluble surfactant
Another interesting experiment with, however, a dissolving drop of nitroethane

deposited over a liquid water layer has been recently conducted by Santiago-Rosanne
et al. (1997). Nitroethane has a much lower surface tension (39 mN m−1) than water
being only partially miscible in it in proportions lower than 5% at room temperature.
Here too the Marangoni effect plays a dramatic role in creating shock-like fronts as
well as smooth solitary-like waves. Indeed, the deposition of the nitroethane drop
induces a sudden local change of surface tension at the circular periphery; hence
the dramatic outward front motion. The interplay of Marangoni stresses and gravity
creates daisy-like patterns which are in fact time-dependent structures. The daisy
flower petals result from collisions of wave crests. Wave profiles and the kinematics
of collisions of both the smooth solitary-like waves and the shocks have been studied
and qualitative agreement exists with the theory I have recently developed, lead-
ing to dissipative Marangoni-driven Boussinesq–Burgers–Korteweg-de Vries (KdV)
equations. Further below I return to this problem when discussing wave motions in
Bénard layers. Details of the experiments with good diagrams and theory can be
found in Santiago-Rosanne et al. (1997).

4. Bénard layers: convective patterns

The onset of patterned convective motions in heated fluid layers with a free
upper surface has been extensively studied since the original experiments by Bénard
(Koschmieder 1993; Velarde & Normand 1980; Normand et al. 1977). Depending on
the depth of the layer, d, one distinguishes two basic mechanisms of instability. In
sufficiently deep layers or in containers where the fluid is confined between rigid hor-
izontal plates, the convective motion settles when buoyancy forces overcome viscous
forces and heat dissipation (Rayleigh–Bénard problem) (Normand et al. 1977). Alter-
natively, in shallow enough layers with an open surface, inhomogeneity in the surface
tension, hence the Marangoni effect is responsible for the onset of motion (Bénard–
Marangoni problem). In both cases, the characteristic wavelength of the convective
structure is about the depth of the cell or much larger, depending on whether or
not the horizontal boundaries are good thermal conductors. Close to the instability
threshold the system may be described by amplitude equations whose coefficients
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depend on the dimensionless numbers of the problem containing fluid properties,
boundary conditions and the external forcing. Most of these numbers have been
earlier defined. If the Biot number, Bi = hd/κ, where h is the thermal surface con-
ductance, its infinite value corresponds to a perfectly conducting boundary while a
zero value corresponds to a poorly conducting surface.

To the Navier–Stokes, continuity and energy equations, in the Boussinesq approx-
imation (Normand et al. 1977), we add the boundary conditions. At the lower uni-
formly heated rigid plate, v = 0 and ∂T/∂z = Bi T . At the top open surface, w = 0,
∂σ/∂z = η(∂u/∂z), ∂σ/∂y = η(∂v/∂z) and ∂T/∂z = −Bi T , where w is the vertical
velocity component.

To study the transition between the motionless state and convection, and the
dynamics of the structures that define this convective state, a multiple scale pertur-
bation theory has been developed in the vicinity of the onset of convection (Bragard
et al. 1996; Bragard & Velarde 1997, 1998, where reference is also given of related
recent work by other authors). A small parameter allows separation of the fast vari-
ables that describe the instability and the slow variables that describe the pattern
dynamics. For instance, the temperature can be written as

T = T (z)[A1(X,Y, τ) exp(ik(1) · r) +A2 exp(ik(2) · r) +A3 exp(ik(3) · r) + c.c.], (4.1)

where k(i) denotes three linearly critical wave vectors oriented at 120◦ in the hori-
zontal plane. The amplitude equations in the horizontal plane are (e.g. for A1)

αt∂tA1 = αt∆A1 + αqA
∗
2A
∗
3

−αcsA1|A1|2 − αciA1(|A2|2 + |A3|2)

+αd(k(1) · ∇x)2A1 + iβ1(K(1) · ∇x)(A∗2A
∗
3)

+iβ2[A∗2(k(2) · ∇x)A∗3 +A∗3(k(3) · ∇x)A∗2]

+iβ3[A∗3(k(2) · ∇x)A∗2 +A∗2(k(3) · ∇x)A∗3], (4.2)

where α1 = 0.0038, αt = 0.05+0.013 Pr−1, αq = 0.0203−0.0046 Pr−1, αcs = 0.016+
0.0049 Pr−1 +0.00077 Pr−2, αci = 0.0217 + 0.003 Pr−1 +0.0018 Pr−2, αd = 0.0021,
β1 = β2 = β3 = β = 0.0016 − 0.0041 Pr−1 and ∆ = M −Mc. Similar equations
appear for A2 and A3 (with circular permutation of the indices) (Bragard & Velarde
1997, 1998). The numbers correspond to the specific case of a poor conducting upper
surface and good conducting lower plate as in standard experiments. These equations
are generalized Ginzburg–Landau equations with advective terms with nonvanishing
β coefficients. In general, for these equations there is no Lyapunov functional; hence
for some value of the β we may observe no steady behaviour. ∆ and β measure the
(sub/supercritical) distance to the threshold and the strength of the advective terms,
respectively. In the simpler case of Pr →∞ we define

∆c = − α2
q

4α1(αcs + 2αci)
≈ −0.456, (4.3)

∆1 = − α2
qαcs

α1(αcs − αci)2 ≈ −53.4, (4.4)

∆2 = − α
2
q(2αcs + αci

α1(αcs − αci)2 ≈ 179.2. (4.5)

Computations and stability analysis show two hysteresis cycles; hence coexistence
and bistability appears in the intervals [∆c, 0] and [∆1,∆2], respectively.
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As an illustration, for a square container starting from random initial conditions
(cases (i)–(iv)) or rolls (v) we have the following results.

(i) (∆ = 50, β = 0.1). The system evolves to a stationary hexagonal pattern.
Relative to the case β = 0 an increase of β only slightly distorts the pattern. The
fluid rises in the centre of the cells in accordance with experimental observations. No
defects are observed.

(ii) (∆ = 75, β = 0). The system is in a bistable region of hexagons and rolls.
(iii) (∆ = 150, β = 0). The rolls are the preferred structure. At boundaries the

rolls tend to be perpendicular to the sidewalls.
(iv) (∆ = 150, β = 0.1). The system does not reach a steady state. Besides the

roll structure, defects appear moving through the system.
(v) (∆ = 150, β = 0.1). Here the computation is with the same parameter values

as in (iv) but with rolls plus noise added as an initial condition. First, the structure
evolves to rolls without defects, but as time goes on the rolls start to bend leading to
a ‘zig-zag’-like instability (Manneville 1990). The system does not show evolution to
a steady state, but rather tends to a labyrinthine structure and possibly interfacial
‘turbulence’.

5. Bénard layers: overstability and waves

Let us consider now the liquid layer heated from the air side or open to suitable
mass adsorption from a vapor phase above, with subsequent absorption in the bulk;
hence creating a (stabilizing) thermal gradient inside the liquid layer. Contrary to
the case of a layer heated from the liquid side, here the layer is stably stratified and
the problem refers to oscillatory motions, waves, and not to Bénard cells (Levchenko
& Chernyakov 1981; Garćıa-Ybarra & Velarde 1987; Chu & Velarde 1988).

(a ) Oscillatory flow motions (transverse and longitudinal waves, surface and
internal waves and their mode mixing)

Generally, the Bénard problem with Marangoni stresses, gravity and buoyancy
involves several time scales. On one hand we have the viscous and thermal scales,
tvis = d2/ν, tth = d2/κ, respectively. There also exist two time scales associated with
gravity and surface tension (Laplace force) that tend to suppress surface deforma-
tion, tgr = (d/g)1/2, tcap = (ρd3/σ)1/2 (g is gravity acceleration and ρ is density or
density contrast; other quantities as earlier defined). The time scale related to the
Marangoni effect is tMar = (ρd2/|σTβ|)1/2 (σT = dσ/dT < 0, β = ∆T/d, β > 0 when
heating from below). There is also another time scale related to buoyancy due to
the stratification imposed by the temperature gradient, tst = (1/(|αβ|g))1/2 (α is the
thermal expansion coefficient, positive in the standard case). The ratios of the time
scales give rise to the dimensionless groups

Pr =
tth
tvis

=
ν

κ
, M = σT

tthtvis

t2st
= −σTβd

2

ηκ
, R =

tthtvis

t2st
=
αβgd1

νκ
,

G =
tthtvis

t2gr
=
gd3

νκ
, B =

t2cap

t2gr
=
ρgd2

σ
,

which heuristically are the earlier introduced Prandtl, Marangoni, Rayleigh, Galileo
and (static) Bond numbers, respectively.

These time scales are not always of the same order (accordingly, Pr , M , R, G and
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B are not always of order unity). For example, for the Pearson problem (Pearson
1958), i.e. the onset of the monotonic instability in a liquid layer with undeformable
surface, we have M ≈ 1, but G � 1 for gravity to be able to keep the surface
practically level, whatever flows and thermal inhomogeneities exist, and R�M for
buoyancy to be neglected. The characteristic time scale of the problem is essentially
tth ≈ tvis ≈ tMar (at Pr ≈ 1).

Thus, for monotonic instability there exists a finite limit of the critical Marangoni
number as G → ∞ given just by Pearson’s (1958) results. However, this is not
the case for the oscillatory instability waves, where the critical Marangoni number
tends to infinity with G→∞. Indeed, oscillatory instability does not appear in the
one-layer problem with undeformable surface. Thus the critical Marangoni number
should better be scaled with G, as G becomes very large (G→∞).

It is also known that for high enough values of G an oscillatory mode is the
capillary-gravity wave. The time scales tgr and tcap associated with this wave are
much smaller than the viscous and thermal time scales (at least for Pr ≈ 1, B ≈ 1).
Then dissipative effects are weak and hence the wave is very much the inviscid liquid
capillary-gravity wave with the dispersion relation ω2 = GPr k(1 + (k2/B)) tanh(k)
(to non-dimensionalize ω the thermal time scale is used hereafter; k is the dimen-
sionless wave number in units of d−1). Then the problem of oscillatory instability
partly reduces to the question whether the Marangoni effect can sustain this other-
wise damped wave. Clearly, the higher the G (and the wave frequency), the stronger
should be the work of the Marangoni stresses (i.e. the critical Marangoni number) to
sustain it, in agreement with the argument of the previous paragraph. An oscillatory
instability can indeed be associated with the capillary-gravity wave. For a standard
liquid layer, σT, this instability appears when heating the liquid layer from the air
side (M < 0), as expected.

However, when the Marangoni number is high enough (and negative), there exists
another high-frequency oscillatory mode. Indeed when a liquid element rises to the
surface, it creates a cold spot there. Then, the surface tension gradient acts towards
this spot, pushing the element back to the bulk, leading to overstability. High values
of M ensure that the oscillations exist. Their characteristic time scale is tMar. The
corresponding wave is called ‘longitudinal’ as it is due to the Marangoni stresses
along the surface in contrast to capillary-gravity waves with essentially transverse
motion of the surface. Lucassen made the theoretical (and experimental) discovery
of this wave mode (Lucassen 1968).

Calculation yields the following expression for the frequency of the longitudinal
wave (in the limit M → −∞):

ω2 = −M Pr
Pr1/2 +1

k2.

Although this longitudinal wave has a genuinely dissipative nature, the damping
rate proves to be asymptotically smaller, O(|M |1/4), than its frequency. In practi-
cal terms the flow field accompanying the longitudinal wave is qualitatively similar
to that for the capillary-gravity wave. Potential flow can be assumed in the bulk
of the layer, while vorticity is present only in boundary layers at the bottom rigid
plate and at the upper free surface. The boundary layer thickness is of the order
O(|M |−1/4)[O(G−1/4)] for the capillary-gravity wave. However, there is a significant
difference, as already noted by Lucassen (1968). For the longitudinal wave the hor-
izontal velocity field in the surface boundary layer is much more intense than the
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potential flow in the bulk (by O(|M |1/4)) at variance with the capillary-gravity wave.
Thus, the longitudinal motion is really concentrated near the surface. Furthermore, it
appears that with an undeformable surface (1 � |M | � G), the longitudinal mode
is always damped. Indeed, oscillatory instability does not appear in the one-layer
Marangoni problem without surface deformability. However, if the longitudinal wave
is accompained by non-negligible surface deformation (|M | > G), it can be amplified,
a striking result (Rednikov et al. 1998a).

Thus, at G � 1, the oscillatory Marangoni instability is associated with two
high-frequency wave modes; capillary-gravity and longitudinal. The damping rate of
one wave mode cannot be drastically changed, or even converted into amplification
(oscillatory instability), if the underlying framework for the other wave mode does
not operate. As already stated, to sustain the longitudinal wave one needs surface
deformability. It also occurs that to sustain a capillary-gravity wave one needs the
Marangoni effect. This is the coupling between capillary-gravity and longitudinal
waves. The latter necessarily implies viscous effects. Presumably, the most dramatic
manifestation of this coupling occurs at resonance, when the frequencies (2.1) and
(2.2) are equal to each other. Near resonance there is mode-mixing. Namely, the
capillary-gravity mode in the parameter half-space from one side of the resonance
manifold is swiftly converted into the longitudinal mode when crossing the manifold,
and vice versa. Another feature of resonance is that the damping/amplification rates
are drastically enhanced here (O(G3/5) versus O(G1/4) far from resonance) (Rednikov
et al. 1998a).

If the liquid layer is deep enough and has an undeformable surface the possibility
also exists of coupling longitudinal waves to internal (negative buoyancy-driven)
waves with |R| � G. This is the Rayleigh–Marangoni problem. Indeed, the role
of the capillary-gravity wave is now played by the Brunt–Väisälä internal wave of
frequency

ω2 = −RPr
k2

k2 + π2n2 (n = 1, 2, . . .),

whose existence is due to the stable stratification induced by heating the layer from
above. The oscillatory instability comes again from wave–wave coupling, now between
internal and longitudinal waves. Note that in the absence of the Marangoni effect,
no oscillatory motion via instability is possible, which again stresses the crucial role
played by the coupling. This instability is studied in detail in Rednikov et al. (1998b).

Although general features of mode coupling are similar in the two problems, there
are differences. In the Rayleigh–Marangoni case we have a countable number (n =
1, 2, . . .) of internal wave modes, and the longitudinal wave can be coupled to each
of them; hence there is a countable number of marginal stability conditions. The
form of the marginal curves is qualitatively different. Furthermore, there exists the
minimally possible Rayleigh number (in absolute value), below which there is no
oscillatory instability. No such bound was found for the Galileo number in the first
problem (at least in the region where G remains high).

(b ) Nonlinear waves
(i) Nonlinear theory for long wavelength motions in shallow layers

The nonlinear evolution past threshold of either capillary-gravity or longitudinal
waves poses formidable tasks. Let us then concentrate on a simplified analysis, which
is still amenable to experimental test. If we restrict consideration to just long wave
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oscillatory instability it has been shown (Chu & Velarde 1991; Velarde et al. 1991;
Garazo & Velarde 1991; Nepomnyashchy & Velarde 1994) that in the particular
case of one-sided (left to right) moving waves they are describable by a dissipation-
modified KdV equation:

ht + (h2)y + hyyy + δ[hyy + hyyy +D(h2)yy + αh] = 0, (5.1)

where h(y, t) is a scaled elevation of the surface in the study of one-side steadly
propagating waves. The coefficient D can be either positive or negative, while α
and δ are non-negative. Equation (5.1) underlies the energy balance sustaining, say,
a solitary wave. Indeed, multiplying equation (5.1) by h, and integrating over the
appropriate space, if the mean value of h along the layer is zero (mass conservation),
then the energy E = 1

2

∫
h2 is governed by the balance

dE
dt

= δ

(∫
h2
x dx−

∫
h2
xx dx+ 2D

∫
hh2

x dx− α
∫
h2 dx

)
, (5.2)

whose value vanishes for a steadily travelling wave. The first term on the right-hand
side of (5.2) describes the energy input at rather long wavelengths due to instability,
the second and fourth terms describe energy dissipation on short and long wave-
lengths, respectively, and the third term accounts for nonlinear (feedback) correction
to long-wave energy input (for h positive, positive if D is positive and negative oth-
erwise). In the absence of dissipation and continuous energy supply, equation (5.1)
reduces to the standard KdV equation and solitary waves or cnoidal waves (periodic
wave trains) are still possible thanks to the disperion-nonlinearity balance also exist-
ing in equation (5.1). When dissipation plays a negligible role in experiment they
can be excited from appropriate initial conditions either numerically or in water
tanks where viscosity can be neglected. In the present case the situation is different.
Indeed, at variance with the (integrable, dissipation-less) KdV equation where a one-
parameter family of solutions exists, and hence as a consequence of initial conditions
all possible amplitudes and corresponding velocities exist, the input–output energy
balance (5.2) selects a single wave or a single amplitude periodic wave train, a bound
state or an erratic/chaotic wave train (Christov & Velarde 1995; Nekorkin & Velade
1994; Velarde et al. 1995; Rednikov et al. 1995b).

On the other hand, when considering the three-dimensional problem (Nepom-
nyashchy & Velarde 1994) phase shifts following collision or reflection at walls depend
upon the incident angle, αi (e.g. measured front-to-front or twice the value front-to-
wall, i.e. by 1

2π − αi; a reflection is like a collision with a mirror image wave). At the
approximate value of 1

2π no phase shift is expected while for lower collision angles the
phase shift has the sign of phase shifts upon head-on collisions. Higher values than
1
2π (or αi <

1
4π) lead to a change of sign in the phase shift and the formation of a

Mach stem, i.e. a third wave evolving phase locked with the post collision or reflected
front, a phenomenon discovered a century ago by Russell (1885) for water waves and
by Mach (Courant & Friedrichs 1948; Krehl & van der Geest 1991) for shocks in
gases. The phase shift sign in such case is the same as the sign in the overtaking
collisions discussed by Zabusky & Kruskal (1965) in their seminal paper where they
also introduced the soliton concept. Phase shifts and the formation of bound states
have been numerically observed. Starting with, for example, an initial condition of
two nearby ‘solitary’ pulses, the system evolves according to equation (5.1) to a wave
train with unequally spaced maxima. All maxima have the same value, and hence
the same velocity dictated by the energy balance (5.2) in the steady state.
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(ii) Experiments
Both mass absorption and desorption, and heat transfer experiments have been

carried out with Bénard layers (Weidman et al. 1992; Linde et al. 1993a, b, 1997;
Wierschem 1997). As a matter of fact, with the theory sketched in the previous
subsection I unearthed some 25-year-old experiments by H. Linde, who at about the
same time of the numerical discovery of the soliton (Zabusky & Krustal 1965) made
its experimental finding (including the collision kinematics of solitons) in surface
tension gradient-driven flows.

For the case of heat transfer (liquid depths from 0.3 to 0.8 cm) liquid octane was
poured in a square or cylindrical vessel, and in an annular channel (1.5 and 2.0 cm
inner and outer radii, respectively). The bottom was cooled by air or water at 20 ◦C
and the quartz cover, placed at 0.3 cm above the liquid, was heated, establishing a
temperature gradient in the liquid layer. For values of this gradient ranging from 10
to 200 K cm−1, solitary waves and periodic wave trains have been observed showing
behaviour in head-on and oblique collisions similar to results from mass transfer
experiments.

For mass transfer the following set-up was devised. In a vessel A, either a cylindrical
container or an annular channel was filled with liquid (liquid depth 1.8 cm). Two
vessels B1 and B2 were also filled with another liquid. With pentane in B1 and B2
either xylene, nonane, trichloroethylene or benzene were used as an absorbing liquid
in A, while with toluene as an absorbing liquid in A either hexane, pentane, acetone
or diethylether were used in B1 and B2. In all cases the results were qualitatively
the same. A glass cover, C, was placed on top of the vessels B1 and then when the
vessel C was full of hexane vapor, say, it was placed on top of A thus allowing the
absorption of hexane by the toluene liquid in A. The adsorption and subsequent
absorption processes were rather strong, creating Marangoni stresses high enough to
trigger and sustain instability. During the whole duration of the experiment, hexane
vapor was also allowed to diffuse from the two vessels B2 to A.

Observation and recording with a CCD camera was made by shadowgraph from
the top with pointlike illumination from the bottom up (work is in progress with
more sophisticated means). For instance, with cylindrical or annular cylindrical con-
tainers, rather violent chaotic motions occurred at first along the surface in A with
waves moving in practically all directions, but finally after about one minute, when
most of the vapor in C has been absorbed, a dramatic self-organization led to regu-
lar wave motion. Long-time-lasting synchronically colliding counter-rotating periodic
wave trains have been observed for about 50–200 s, while the single (periodic) wave
train with either clockwise or counter-clockwise rotation remained up to 450 s. As
the Marangoni stresses decay the number of crests in each train increases with cor-
responding wavelength decrease. Subsequently, a single set of either clockwise or
counter-clockwise (periodic) rotating waves remains until finally when the constraint
fades away all convective motions disappear. Typical mean wave velocities at the
outer wall of the annular channel before and after collision are, respectively, 2.7
and 1.7 cm s−1 (corresponding to angular speeds of 71.4 and 45.7◦ s−1, respective-
ly). Thus the mean wave velocity right after collision is about 64% (with less than
2% error) the mean wave speed measured before collision. About 0.2 s after colli-
sion the original wave speed is recovered. The phase shift shows the same sign as in
the case of head-on collisions of ‘solitary’ waves in rectangular vessels. Reflections
at walls also illustrate the solitonic/shock behaviour of the waves which occur with
and without the formation of a (phase locked, third wave) Mach stem according
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to the angle of incidence. I have sketched just some of our findings. The phenom-
ena observed are complex and only recently have there been clear-cut distinction
between mostly surface waves (Marangoni–Bénard problem) and (mostly) internal
waves (Rayleigh–Marangoni problems), all of them are triggered and sustained by
the Marangoni effect, as heuristically discussed in §5 a. Further details about the
experiments can be found in Weidman et al. (1992), Linde et al. (1993a, b, 1997) and
Wierschem (1997).
This paper summarizes work done in the past few years in my laboratory at the Instituto
Pluridiciplinar in Madrid. It is the result of fruitful collaborative research with Michèle Adler,
J. Bragard, C. I. Christov, A. de Ryck, H. Linde, A. A. Nepomnyashchy, A. Ye. Rednikov,
M. Santiago-Rosanne, V. Starov and A. Wierschem. The research was supported by various
grants: DGICYT PB93-0081, EU Network ERBCHRX-CT96-0107, EU Network ERBFMRX-
CT96-0010, and Fundación BBV (Programa Cátedra, University of Cambridge).
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Discussion
S. K. Wilson (Department of Mathematics, University of Strathclyde, Glasgow,
UK). As an applied mathematician working on the theoretical investigation of
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Marangoni phenomena it has been very interesting to see some new situations in
materials processing in which Marangoni effects are important. However, researchers
in materials processing should be aware that work on similar phenomena is ongoing
in other areas. These include crystal growing (about which we have heard something
at this Meeting), the coating industry (see, for example, the paper by Wilson (1993))
and biological applications (see, for example, the recent review article by Grotberg
(1994)). In all these cases I’m sure both parties would benefit from collaboration
between workers in apparently very different subject areas.

J. R. Helliwell (Department of Chemistry, University of Manchester, Manchester,
UK). Marangoni convection driven fluid flow is one type of convection effect (Helliwell
1988; Chayen et al. 1996). In any ‘real’ experiment, such as one to produce a high
quality protein crystal (a type of materials processing, certainly), there are a variety
of effects which can defeat the reaching of the ideal situation, which I define here as
growing a protein crystal that does not move in the fluid due to sedimentation (on
Earth), or due to g-jitter in orbit, and where also the mother liquor is not subject to
(turbulent) fluid flow. A real situation then is a superposition of perturbation effects
away from an ideal and each of which may induce some sort of defect. Neverthless,
the choice of particular crystallization geometry, e.g. avoiding vapour diffusion (i.e.
liquid–vapour interface) can avoid Marangoni effects. However, in a linear liquid–
liquid diffusion geometry other effects due to g-jitter are more difficult to eliminate
and, except perhaps in the case of an uncrewed orbiting platform, may always prevent
the ideal conditions every truly being realized. I am interested to hear from other
areas of ‘materials processing’ the relative importance for Marangoni over other
convection or g-jitter driven effects. Perhaps cases like crystal growth from a liquid
bridge, of initially molten material, simply cannot avoid Marangoni convection? By
contrast, in protein crystal growth it seems that Marangoni convection can be avoided
rather simply by avoidance of liquid vapour droplet geometry. The exploration of
the ultimate protein crystal quality obtainable relates to the exceptionally fine X-
ray brilliance available from the new generation of SR X-ray sources and harnessing
their full technical capability. In addition, the overall motivation for such studies in
protein crystallography is to better understand the factors that can lead to a poor
quality crystal or indeed no crystal at all (or at best a ‘microcrystal’).
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